Index of Concepts
A
- agglomerative clustering (agglomerative-clustering)
- array (array)
B
- backward selection (backward-selection-model)
- backward stepwise selection (backward-stepwise-selection)
- binary classifier (binary-classifier)
- boolean (boolean)
C
- CART (cart)
- classification model (classification-model)
- classification tree (classification-tree)
- clustering model (clustering-model)
- clusters (clustering-model-clusters)
- column (column)
- complex number (complex)
- correspondence analysis (correspondence-analysis)
- Cubist model (cubist)
- coefficients (exponential-family-linear-model-coefficients)
- coefficients (glm-coefficients)
- centroids (k-means-centroids)
- components (linear-dimension-reduction-model-components)
- coefficients (linear-model-coefficients)
- coefficients (linear-svm-coefficients)
- column names (table-column-names)
D
- data (data)
- decision tree (decision-tree)
- design matrix (design-matrix)
- dimensionality reduction (dimension-reduction-model)
- discriminant function (discriminant-function)
- divisive clustering (divisive-clustering)
- dummy coding (dummy-coding)
- deviance (glm-deviance)
- database (sql-query-database)
- database (sql-table-database)
- dual coefficients (svm-dual-coefficients)
E
- Euclidean model (euclidean-model)
- evaluate formula for supervised model (evaluate-formula-supervised)
- Excel spreadsheet (excel-spreadsheet)
- exponential family linear model (exponential-family-linear-model)
- expression (expression)
F
- feature extraction (feature-extraction)
- feature extraction model (feature-extraction-model)
- feature selection (feature-selection-model)
- file (file)
- filename (filename)
- fit model (fit)
- fit supervised model (fit-supervised)
- forward selection (forward-selection-model)
- forward stagewise selection (forward-stagewise-selection)
- forward stepwise selection (forward-stepwise-selection)
G
- generalized linear model (glm)
H
- hierarchical clustering (hierarchical-clustering)
I
- intercept (exponential-family-linear-model-intercept)
- incrementally select features for supervised model (fit-incremental-selection-supervised)
- intercept (glm-intercept)
- ICA (ica)
- incremental feature selection (incremental-selection-model)
- integer (integer)
- intercept (linear-model-intercept)
- intercept (linear-svm-intercept)
K
- k-means clustering (k-means)
- kernelized (k-means-kernelized)
- k-medoids clustering (k-medoids)
- kernel k-means clustering (kernel-k-means)
- kernel model (kernel-model)
- kernel PCA (kernel-pca)
- kernelized (kernelized)
- kernelized (linear-svm-classification-kernelized)
- kernelized (linear-svm-kernelized)
- kernelized (linear-svm-regression-kernelized)
- kernelized (pca-kernelized)
L
- linkage matrix (hierarchical-clustering-linkage)
- lasso (lasso)
- linear dimensionality reduction (linear-dimension-reduction-model)
- linear discriminant analysis (LDA) (linear-discriminant-analysis)
- linear model (linear-model)
- linear regression (linear-regression)
- linear support vector machine (linear-svm)
- linear support vector classification (linear-svm-classification)
- linear support vector regression (linear-svm-regression)
- logistic regression (logistic-regression)
- length (vector-length)
M
- medoids (k-medoids-medoids)
- M5 model tree (m5-tree)
- matrix (matrix)
- mean absolute error (mean-absolute-error)
- mean squared error (mean-squared-error)
- multiclass classifier (multiclass-classifier)
- multinomial logistic regression (multinomial-logistic-regression)
- multiple correspondence analysis (multiple-correspondence-analysis)
- model selection (selection-model)
N
- number of dimensions (array-n-dimensions)
- number of clusters (clustering-model-n-clusters)
- name (column-name)
- number of dimensions (dimension-reduction-model-n-dimensions)
- number of classes (multiclass-classifier-model-n-classes)
- number (number)
- name (r-dataset-name)
- number of features to sample (random-forest-n-features)
- number of columns (table-n-cols)
- number of rows (table-n-rows)
- number of trees (tree-ensemble-n-trees)
O
- OLS linear regression (least-squares)
P
Q
- query expression (sql-query-expression)
R
- RSS (linear-model-rss)
- R dataset (r-dataset)
- R package (r-dataset-package)
- random forest (random-forest)
- read data (read-data)
- read file (read-file)
- read table (read-table)
- read tabular file (read-tabular-file)
- real number (real)
- regression model (regression-model)
- regression tree (regression-tree)
S
- shape (array-shape)
- source of data (data-source)
- sheet name (excel-spreadsheet-name)
- selected features (feature-selection-model-selected)
- statistical model (model)
- scalar quantity (scalar)
- selected model (selection-model-selected)
- simple correspondence analysis (simple-correspondence-analysis)
- SQL database (sql-database)
- SQL query (sql-query)
- SQL table (sql-table)
- string (string)
- supervised model (supervised-model)
- support vector machine (svm)
- support vector classification (svm-classification)
- support vector regression (svm-regression)
- support vectors (svm-support-vectors)
- selected model (vif-regression-selected)
T
- tree by index (cubist-tree)
- table name (sql-table-name)
- table (table)
- tabular data source (tabular-data-source)
- tabular file (tabular-file)
- transform (transform)
- transformation model (transformation-model)
- transformer (transformer)
- tree-based model (tree-based-model)
- tree ensemble (tree-ensemble)
- tree by index (tree-ensemble-tree)
U
- use multiclass classifier for binary classification (as-binary-classifier)
- use multinomial logistic regression for logistic regression (as-logistic-regression)
- unsupervised model (unsupervised-model)
V
- vector (vector)
- VIF regression (vif-regression)
W
- write data (write-data)
- write file (write-file)
- write table (write-table)
- write tabular file (write-tabular-file)